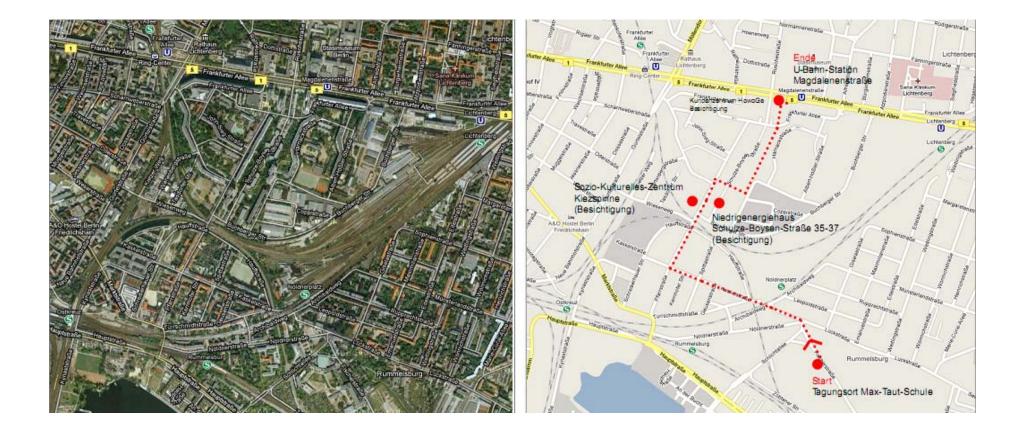


Part-financed by the European Union (European Regional Development Fund and European Neighbourhood and Partnership Instrument)

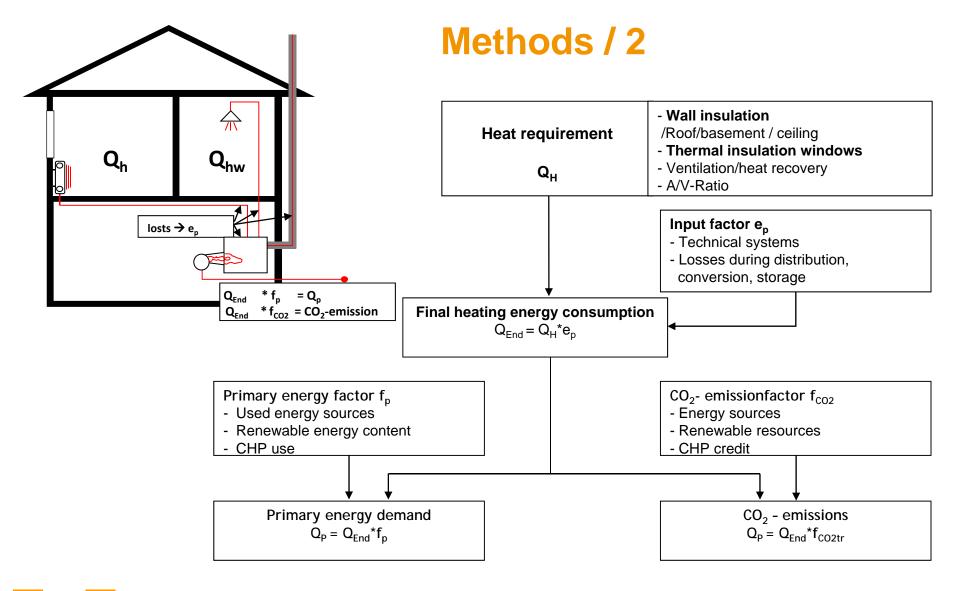
Energy efficiency and CO₂-balance Case Study Berlin

Dipl.-Ing- Henryk Hoenow, BBP Bauconsulting mbH Center of Competence für Major Housing Estates 21 October 2010, Berlin Seminar

Content of the presentation


- The case-study area, objectives and methods
- Energetic parameters 1991/92
- Deficits and needs for action
- Realised refurbishments
- Achieved energetic parameters and CO₂-reduction 2010
- Conclusions

Investigation area: Kaskelkiez / Frankfurter-Allee-Süd


Objectives and methods of the study

- Valuation of the energetic parameters of the building stock before and after refurbishment
- Relevant elements:
 - insulation status
 - existing heating systems
 - primary energy usage
- Approach:
 - calculation for typical building types
 - extrapolation from single buildings to floor space of the case-study area

Baltic Sea Region

Urb.Energy Berlin - Brandenburg, 21.10.2010, Dipl.-Ing. Hoenow Case Study Berlin - 5

WP 4 Energy Supply

Procedure

- 1. Ascertaining of the energetic relevant building types in the case-study area (e.g. year of construction, heating system, used primary energy...)
- 2. Ascertaining of the related energetic- and CO₂-parameters with feasible accuracy
- 3. Compilation of
 - Primary-energy factors and
 - CO₂-emission-factors
- 4. Allocation of floor-areas
- 5. Multiplying and Summarizing of energy demand / consumption and CO₂-emission-values
- → Find the comprehensive calculation scheme for the Berlin Case-Study-Area on the Urb Energy web-site (www.urbenergy.eu)

Description Kaskelkiez (KAS) 1991/92

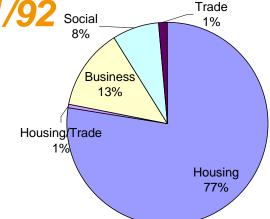
- Buildings mainly masonry structure (brick walls, construction period 1875-1920), lower part for trade and social institutions Industry / business in western part of area (e.g. Knorr Co.)
- Block development with war-related gaps
- Total living / usable area: ca. 187.450 m²

Description Kaskelkiez (KAS) 1991/92

- 99% buildings masonry type, constructed before 1920
- Poor constructive conditions of buildings
 - 12 % poor / desolate
 - 59 % moderate damages
 - 29 % normally usable
- Heating systems (residential):
 - 76 % stove heating (single room)
 - 14 % gas individual room heater (type Gamat e.g.)
 - 2 % gas storey heating
 - 8 % central heating (coal)
- Hot water (residential):
 - 45 % coal stoves
 - 30 % electrical storage heaters
 - 25 % gas instantaneous water heaters
- No district heating service

Baltic Sea Region

Results Kaskelkiez (KAS) 1991	/92	
203	kWh/m²a	
spec. heating energy demand		
319	kWh/m²a	
spec. final energy demand		
383 <mark>383</mark>	kWh/m²a	
spec. primary energy demand		
108	108 kg/m²a	
CO ₂ - emission		
final energy demand (heating/hot water) : ca. 59.900 MW		
 primary energy demand (heating/hot water) 	: ca. 72.000 MWh/a	
 CO₂-emission 	: ca. 20.200 t/a	
for \approx 188.000 m ² total living/usable area		


Urb.Energy Berlin - Brandenburg, 21.10.2010, Dipl.-Ing. Hoenow Case Study Berlin – 9

Description Frankf.-Allee-Süd 1991/92 Social

 Mainly residential area (prefabricated building type), social institutions e.g. schools, day-carefacilities as well as industry / trade / business

Description *Frankf.-Allee-Area* 1991/92

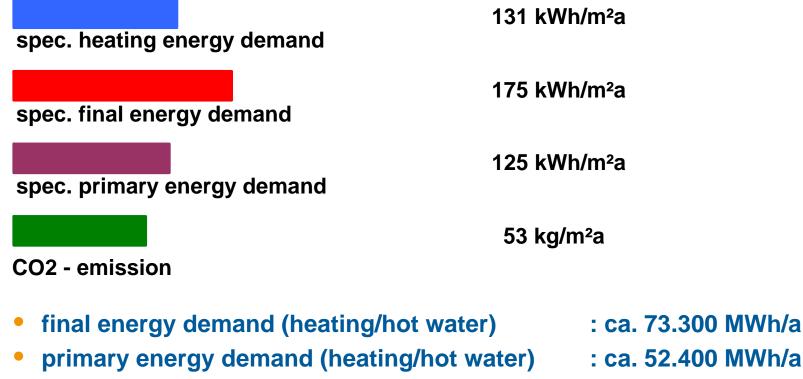
• Description of buildings

Type 1 to 3 are prefabricated construction types

- Type 1 (WHHGT 18/21); triple-layer concrete slabs, with thermal insulation core (5 cm), single pipe heating system, central hot-water system, district heating, 18-21 floors, construction date: 1973 1975
- Type 2 (P 2 /11); single layer concrete slabs with inside thermal insulation (5 cm wood-wool-slab), single pipe heating system, district heating, central hot-water, 11 floors, construction date: 1970 1973
- Type 3 (WBS 70); triple-layer concrete slabs, with thermal insulation core (5 cm), double pipe heating system, central hot-water system, district heating, 5-6 floors, construction date: 1987 - 1989

Type 4 covers masonry construction buildings

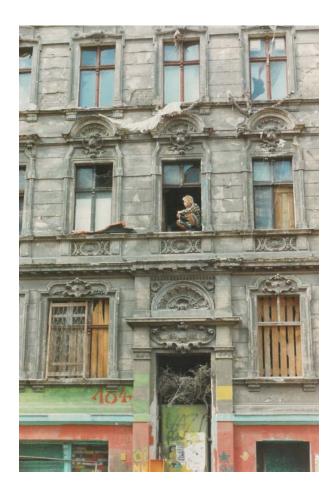
- Type 4 (Brickwork); 2-5 floors, construction date: 1880 – 1923


Community Buildings

 Schools / gymnasiums also in prefabricated construction type, heated by distric heating service

Results Frankf.-Allee-Süd 1991/92

- CO₂-emission
- for \approx 418.000 m² total living/usable area


: ca. 22.100 t/a

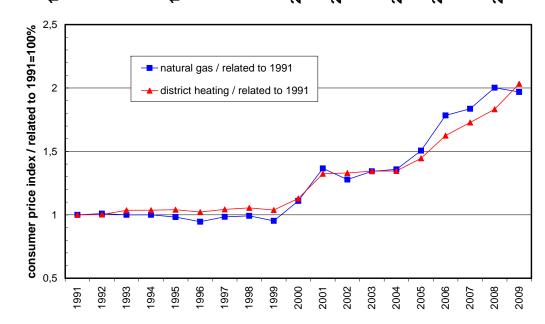
Refurbishment requirements

- Deficites Kaskelkiez
 - high need of repair concerning building's outer shell and technical equipment
 - partly buildings not usable for living
- Deficites Frankfurter-Allee-Süd
 - buildings mainly damages of facades (outer walls and windows) and roofs
 - technical equipment (heating stations) in poor conditions (technical standard / dimensions /
 - adjustment control)

Baltic Sea Region

Discussions / conflicts

- ownership situation influence restoration activitie
 - FAS: buildings are property of a few large owners (housing associations / cooperatives)
 - KAS: fragmented ownership structure partly not clarified ownership (restitution)
 ca. 20 % of building owners live in area
- Restoration and conservation statutes / historical monument protection
 - requirements of historical monument protection increase costs
 - partly waiving of thermal insulation
 - or only insulation of the backside facades (side wings, yard)



WP 4 Energy Supply

Energy requirements

 Development of Heat Insulation Ordinance or Energy Saving Regulations

150 requirements of heating energy demand for new buildings [kWh/m²a] 2. WSVO (since 1984) 100 70 3. WSVO 50 EnEV 2002 EnEV 2004 EnEV 2007 EnEV 2009 35? 2004 1990 1996 2002 2007 2009 2012

 Development of energy costs

Realised energy-efficient measures

Kaskelkiez

- stove heating → central heating with modern low-temperature / condensation boilers based on natural gas
- single drinking water supply → central supply combined with heating system
- renovation of leaky roofs, partially by insulation of the top-ceiling
- Replacement / Refurbishing of old wood windows

Frankfurter-Allee-Süd

(100 % complex renovation of prefabricated residential)

- Insulation of the facades
- Insulation of the lowest / top ceilings
- Window replacement
- Maintenance of the district heating supply
 - Renovation of the district heating stations
 - single-pipe heating → twin-pipe heating system (or by-pass pipes)

Kaskelkiez - Status quo 2010

Large part of houses renovated ca. 60 % completely / partially ca. 15 % basically ca. 25 % simple or not renovated

Differentiated renovation status

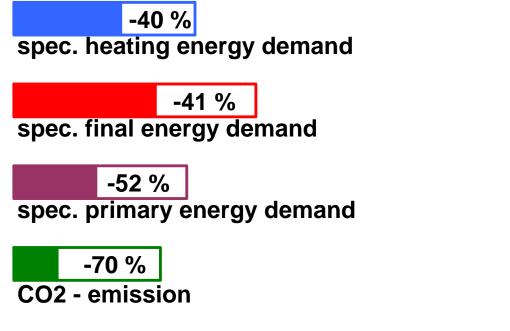
- change of heating systems mostly realised
- renovation of facades and windows
- outer walls in most cases without thermal insulation (due to historical monument protection)

Complex energetic reconstruction partly done: Example Kaskelstraße 49: reconstruction on new-building-level thermal insulation of outer walls, roofs, basement, windows with triple-layer-glasses gas heating system with upper heating value + thermal solar collector

Frankfurter-Allee-Süd - Status quo 2010

- FAS renovation status
 - prefabricated residential buildings almost completely energetically renovated
 - schools and gymnasiums renovated
 - office buildings no energy-related renovation
- mostly complex renovation projects
 - thermal insulation of all outer walls, roofs etc.
 - new windows
 - replacement of 1-pipe to 2-pipe heating system
 - reconstruction of electrical equipment and water systems
- largest low-energy-building-reconstruction 21-storey residential building
 Schulze-Boysenstr. 35/37

Case Study Berlin – 18


KAS 2010 - Energy efficiency / CO2-emission-25 %152 kWh/m²aspec. heating energy demand-42 %-42 %184 kWh/m²aspec. final energy demand-46 %205 kWh/m²aspec. primary energy demand40 kg/m²a-63 %40 kg/m²aCO2 - emission-41 %

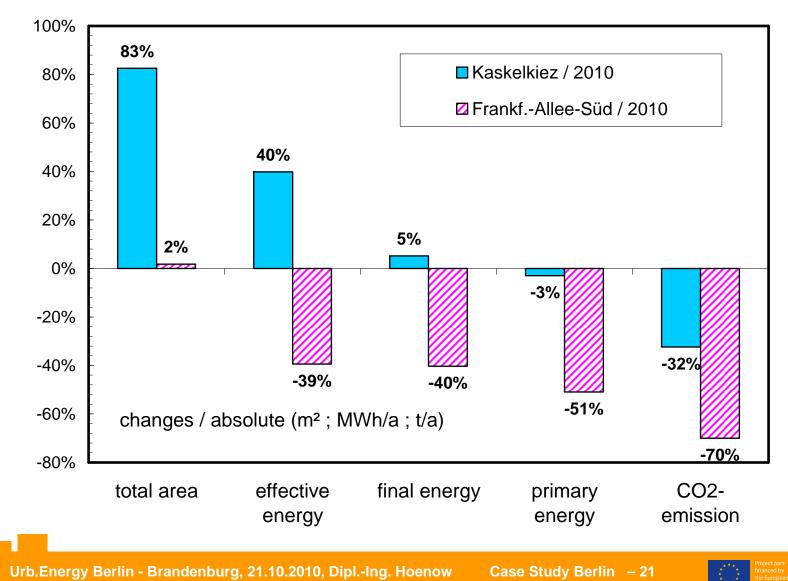
- realised through
 - renovation on different levels
 - new heating systems (central), mostly based on natural gas
 - replacement of coal as primary energy source

FAS 2010 – Energy efficiency / CO₂-emission

- realised through
 - complete reconstruction
 - renewal of building equipment (heating / hot water / ventilation)
 - district heating generation with combined heat and power process (CHP)

78 kWh/m²a

103 kWh/m²a


60 kWh/m²a

16 kg/m²a

Comparison - Energy efficiency / CO₂-emission

Conclusions

- First priority: planning supply networks
 - District heating (CHP) available?
 - Decentralised heating-solutions necessary?
- Preference on implementation of one-time complex EEM
- Small-scale ownership needs intensive constructional and financial advising and support

Perspectives

Achieved energy efficiency status (heating + warm water)		
	Final energy	Primary energy
Kaskelkiez	184 kWh/m²a	205 kWh/m²a
Frankfurter Allee-Süd	103 kWh/m²a	60 kWh/m²a

Potential for further actions:

Kaskelkiez

- more insulation measures
- more efficient usage of primary energy

Frankfurter Allee-Süd

- classical EEM-potential implemented
- long term objectives:
 - district heating shift to renewable energies

End

- Thank you for your interest.
- Questions / discussions ?
- Further details can be given during the tour after lunch.

